POR²ZONE

29 NOV 2023

14:00 UTC

WITH LUKAS PAUL

FEATURING MARIA ZAMIRALOVA BEUMER GROUP

maria.zarmirlova@beumer.com

EPISODE 12: SELECTION STRATEGIES FOR DRY BULK HANDLING EQUIPMENT AT SEASIDE

Beumer Group

Port Zone

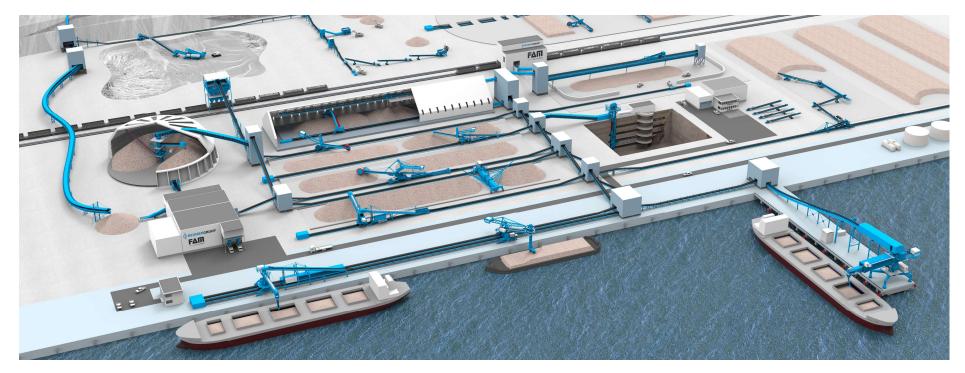
Selection Strategies for Dry Bulk Handling Equipment at Seaside Maria E. Zamiralova

Episode 12 29 November 2023

Agenda

- Introduction
- Berth Occupancy & Commitment Concepts
- Ship handling operations
- Fleet Distribution
- Product properties
- Conclusions
- Q&A Session

Asean Buntulu Fertilizer, Urea ship loader 1.000 tph, Beumer Group



Introduction

Motivation

- How to organize my seaside operations?
- How many berths to construct?
- What kind of material handling equipment to select (type, number, capacity)?

Introduction

Starting point

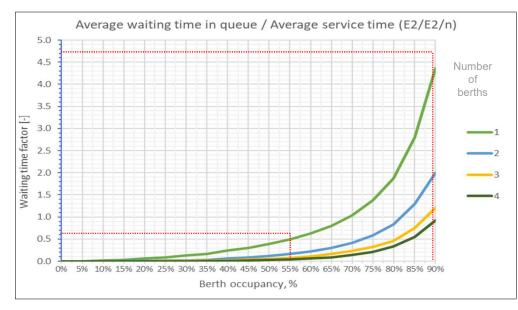
Selection strategy of seaside material handling facility

Major decisive aspects are reflected in PIANC*

- *Product(-s) (Properties, Mono/ Multi cargo)
- ***Throughputs** (for each product, direction, seasonality)
- ***Fleet Distribution** (Vessel DWT, dimensions, parcel)
- ***Terminal/ Port Particularities** (weather restrictions, channel & tidal conditions, etc.)
- Greenfield / Brownfield (expansion/ due diligence)
- Land plot & space available

*PIANC 184-218 Design principles for design bulk terminals, The World Association for Waterborne Transport Infrastructure

Project: First Terminal for Valemax-Ships in South East Asia, 26 Troughed belt conveyors, 5 km conveyors in total, Planning & Engineering Services, Supervision of erection & commissioning, Beumer Group


Berth occupancy concept

Number of berths: relationship between berth occupancy and vessel waiting time

- Berth Occupancy = Berth occupancy time/ Berth available time
- With increase of berth occupancy, queueing time increases exponentially
- If berth occupancy is high, vessels start queuing > risk of demurrage > less attractive for ship owners

- If berth occupancy is high, vessels start queuing > risk of demurrage
- Demurrage for bulkers: 30.000~50.000 EUR per day
- If no demurrage + high occupancy> less attractive terminal for ship owners
- However, <u>higher occupancy is possible</u> > clockwork operations > risks are higher > could be during peak season

Average waiting time of vessels on anchorage for service (vessel arrival according to Erlang 2 distribution E2/E2/n) [UNCTAD Port Development, United Nations Conference on Trade and Development]

Figure from [www.crawfordnautical.com]

Ship handling operations

Vessel service time

i	Unscheduled Downtime										
ldle time	Ship Transit to Berth	Pre- operating time	(Un-)loading time	Operational delays	Weather delays	Technical Breakdown	Post- operating time	Ship Transit form Berth	Scheduled Downtime		
	Gross Operating Time										
Berth Occupancy Time											
Berth Available Time											
	Calendar Time										

Figure modified from [PIANC 184-218 Design principles for design bulk terminals], The World Association for Waterborne Transport Infrastructure

Ship handling operations

Vessel service times

- Auxiliary operations (1~12)h, depend on Vessel size
 - **Pre:** Mooring, Draft survey, Setting-up gangway, Review of loading/ discharge plan, Customs, Formalities, Fumigation
 - Post: Final draft survey, formalities, waiting for pilotage, unmooring
 - Unscheduled downtime: scattered over the vessel service time
 - Operational delays:
 - Parcel size, equipment cleaning & switch
 - Hatch change> important for ship loading operation & Ballast system, Vessel configuration
 - **Redundancy** (1SL x 5000 tph or 2 x 2500 tph or 2 x 5000 tph), take into account loads on quay structure, system flexibility requirement

Project: Onne Port, Nigeria SL 990 t/h for urea, FAM Beumer Group

Project: GAP Insaat Dubai 1SL 1200 tph for urea, FAM Beumer Group

	Idle time	Ship Transit to Berth	Pre- operating time	(Un-)loading time	Operational delays		Technical Breakdown	Post- operating time	Ship Transit form Berth	Scheduled Downtime
--	--------------	--------------------------	---------------------------	-------------------	--------------------	--	------------------------	----------------------------	----------------------------	-----------------------

Unscheduled Downtime

Vessel service time

Ship handling operations

	Idle time	Ship Transit to Berth	Pre- operating time	(Un-)loading time	Operational delays		Technical Breakdown	Post- operating time	Ship Transit form Berth	Scheduled Downtime
--	--------------	--------------------------	---------------------------	-------------------	-----------------------	--	------------------------	----------------------------	----------------------------	-----------------------

- Weather delays:
 - o geographical location, (non-)sheltered terminal,
 - o multi-cargo (un-)hygroscopic properties > even can be regulated by different local standards > close hatches, parking SL, transfer to anchorage
- Technical breakdown:
 - o depend on the equipment condition & maintenance
 - Technical availability of a transport consecutive line
- Scheduled Downtime: planned maintenance ('opportunity' management, between ship calls)

Project: Puerto Ventanas, Chile, pipe conveyors supply by **Beumer Group** Figure: [www.mundomaritimo.cl]

Sheltered terminal, the Netherlands, Figure [www.portofamsterdam.com]

Project: LLC Riga Fertilizer, Terminal Riga, Latvia, twin SLs 1900 tph, urea, supplied by FAM Beumer Group

Vessel service time

Ship handling operations : vessel statements review

DATE	DAY	TIME	OPERATION NOTICES
24.06.2021	тни	0154 0154-0645 0645-0700 0700 0700-2400	VESSEL ARRIVED AT PIVDENNIY PILOT STATION. NOR TENDERED. RIVER PILOT ON BOARD. PROCEEDING TO PORT ROADS. PORT PILOT ON BOARD. MANEUVERING. VESSEL ARRIVED AND ANCHORED AT PORT ROADS. AWAITING BERTHING IN LINE AFT
25.06.2021	FRI	0000-2400	AWAITING BERTHING IN LINE AFTER M
26.06.2021	SAT	0000-2400	AWAITING BERTHING IN LINE AFTER M
27.06.2021	SUN	0000-2400	AWAITING BERTHING IN LINE AFTER M 14 00000
28.06.2021	MON	0000-2042 1900-2042 2042-2100 2100-2120 2120-2320 2220-2320 2320 2320 2320-2400	AWAITING BERTHING IN LINE AFTER M/V ** PORT PILOT ON BOARD. BERTHING. ALL FAST AT BERTH #5. GANGWAY INSTALLATION. INWARD CLEARANCE. F.P.G. WRITTEN FORM OF NOR HANDED OVER TO AGENT. INITIAL DRAFT SURVEY. CARGO HOLDS INSPECTION BY SURVEYORS. CARGO HOLDS ACCEPTED. LOADING COMMENCED. LOADING IN PROGRESS.
29.06.2021	TUE	0000-2400	LOADING IN PROGRESS.
30.06.2021	WED	0000-0340 0340-0440 0440-2010 2010-2100 2100-2240 2240-2330 2330-2400	LOADING IN PROGRESS. NO LOADING DUE TO RAIN. LOADING IN PROGRESS. NO LOADING DUE TO RAIN. LOADING IN PROGRESS. NO LOADING DUE TO RAIN. LOADING IN PROGRESS.
01.07.2021	THU	0000-1130 1130-1330 1330-1330 1330-1400 1330-1400 1330-1400	LOADING IN PROGRESS. LOADING COMPLETED. NO MORE CARGO REQUESTED FOR LOADING BY MASTER. FINAL DRAFT SURVEY. CARGO DOCUMENTS ON BOARD. SIGNED. CARGO DOCUMENTS VERIFIED BY CUSTOMS. OUTWARD CLEARANCE. PILOTS ON BOARD, UNBERTHING. VESSEL SAILED.

Example fragment of a vessel statement

Project: Baffinland Iron Ore Corporation Milne Inlet - Nunavut Canada 2 x SL 3500 tph iron ore, supplied by FAM Beumer Group

Vessel service time

Ship (un-)loading time

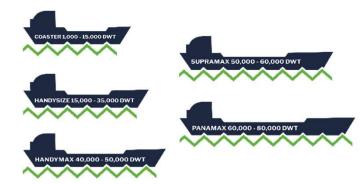
Idle Ship Transit operating time	erating (Un-)loading time Open	erational Weather Technic elays delays Breakdo	oporating	Ship Transit form Berth	Scheduled Downtime
----------------------------------	--------------------------------	---	-----------	----------------------------	-----------------------

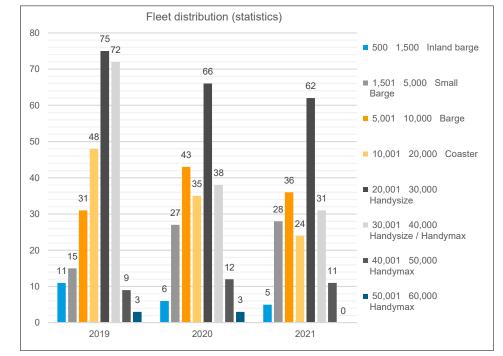
- Ship loading operations
 - o Intake equipment capacity: preference for decoupled in/ out take operations (e.g., grain export terminal Truck-Vessel or Truck-Storage-Vessel)
 - Vessel size limits the ship loading capacity (ballast system)
- Ship unloading operations
 - o Ballast system is not limiting
 - o Consider through-ship capacity, efficiency losses extends unloading time

Vale vessel is loaded with 2 quadrant SLs [Figure: www.gcaptain.com]

Barges are loaded with mobile equipment from trucks [Figure: Telestack]

Example of cleaning hold with mobile equipment [Figure Wikimedia commons]


Impact of fleet distribution



Trade-off study

How do we divide our throughput?

- Impact of fleet distribution
 - Large vessels are more effective higher SL capacity + efficient use of time > more time on actual (un-) loading> less time is wasted on non-(un-) loading operations
 - Depend on contractual obligations

Example of fleet distribution of an existing grain terminal of a multi-cargo port

Berth Commitment concept

	Unscheduled Downtime										
Idle time	e time Ship Transit to Berth Pre-operating time (Un-)loading time Operational delays Weather delays Pre-operating time Ship Transit form Berth										
	Gross Operating Time										
	Berth Occupancy Time										
	Berth Available Time										
	Berth Commitment Time										
	Calendar Time										

[PIANC 184-218 Design principles for design bulk terminals], The World Association for Waterborne Transport Infrastructure

Food for thought

- Berth occupancy strategy:
 - o recommendations are based on queueing theory
 - o seem more conservative, higher occupancies are observed
- Berth commitment strategy:
 - o recommendations are limited for case options
 - o relevant when ship transit is important (e.g., channel access)

Which one do you use?

BEUMERGROUP

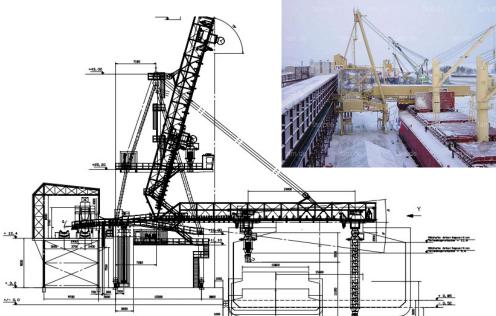
Product governs the type of SL or CSU

- Type of equipment and (Un-)loading capacity is also limited by product properties •
 - Mineral fertilizers > particle breakage > needed for crop growing (not evenly distributed at fields) > product quality damage > 0 2000-4000 tph
 - Ship unloading equipment: Coarse material > high volume, coal, iron ore (grab crane, CSU: vertical screw, bucket elevator) 0
 - Continuous ship unloading equipment: fine powder & low density > pneumatic 0

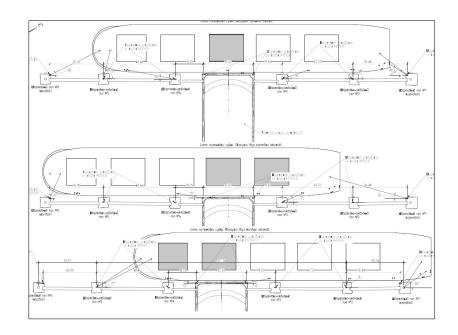
Project: East Europe, 3 x ship loaders 1500 tph, 60.000 DWT, potassium chloride, supplied by FAM **Beumer Group**

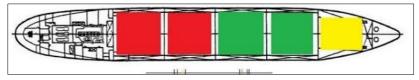
Project: 2 x CSUs 850 tph, coal, Power station Song Hau 1, Vietnam, supplied by FAM **Beumer Group**

Pneumatic continuous ship unloader [Figure: Vigan]



Equipment selection




Trade-off study

- Design vessels (Largest/ smallest, high/ low tide, laden/ empty)
- No clashing, more flexibility and functionalities (luffing, slewing, retracting)
- CAPEX investment

Project: East Europe, 3 x ship loaders 1500 tph, 60.000 DWT, potassium chloride, supplied by FAM Beumer Group

Example sketch: due diligence project, working corridor of existing SLs do not cover hatches of design vessels

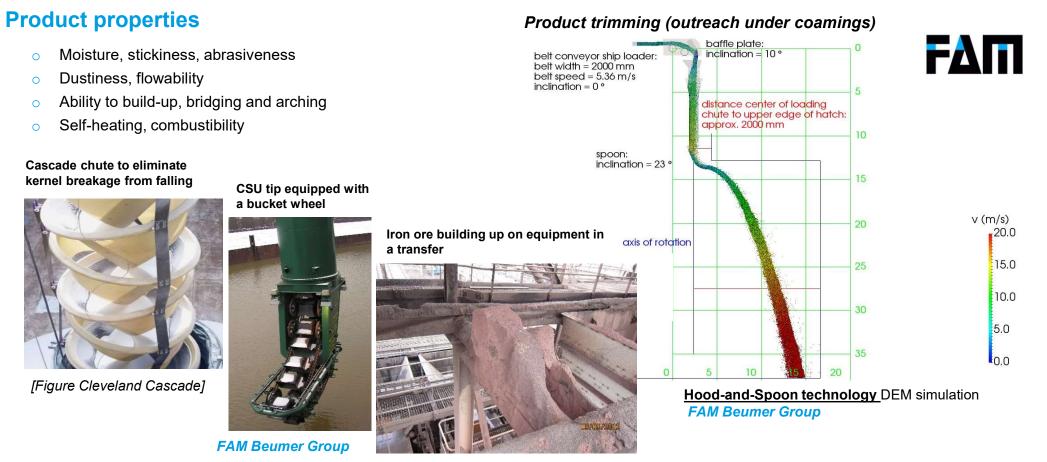
Equipment selection

Trade-off study: Functionality & CAPEX investment

- Larger vessels are more effective for using available time, but:
- **Marine and civil works:** e.g., Quadrant SL (LOA, Beam, Draught) > dredging & marine structures, distance to achieve Vessel draught

Project: Carbones del Cerrejon Ltd., Port Puerto Bolivar, 2 Quadrant SLs 6600 tph, supplied by FAM Beumer Group

• **Brownfield/ Greenfield:** selection of static SL, replacement of an old SL, integration to existing facilities



Project: Taiheiyo Engineering Corporation, Port Bohol, Limestone 1x SL 1200 tph, Philippines supplied by FAM Beumer Group

Impact of product, equipment selection

[Figure courtesy Jan Hiltermann]

Impact of product, equipment selection

Environmental protection

• Environmental protection: strict requirements for spillage-free and no dust emission operations

Antarctic Project: Isla Riesco, most southern installation Twin bridge type 2SL 3000 tph, supplied by FAM Beumer Group

Impact of product, equipment selection

Trade-off study

- High congestive environment, from pit-to-port solutions
- Environmental protection: strict requirements for spillage-free and no dust emission operations

Project: Iron ore transport in China, Port of Rizhao, conveying systems 5500 tph, 2 x PCs, Ø 500mm, total length 6,6 km, supplied by **Beumer Group**, planning, engineering, supervision of erection & commissioning

Other aspects

- Channel access, port rules (think over berth commitment concept!)
- **Shared adjacent berth** (e.g., space needed for unmooring is not suffceint for two largest vessels, depending on the fleet distribution, can occupy adjacent berth)
- Simulation study (Discrete Event Simulation)
- Seasonality (peak season period can be with higher berth occupancy, but need time slack to recover)

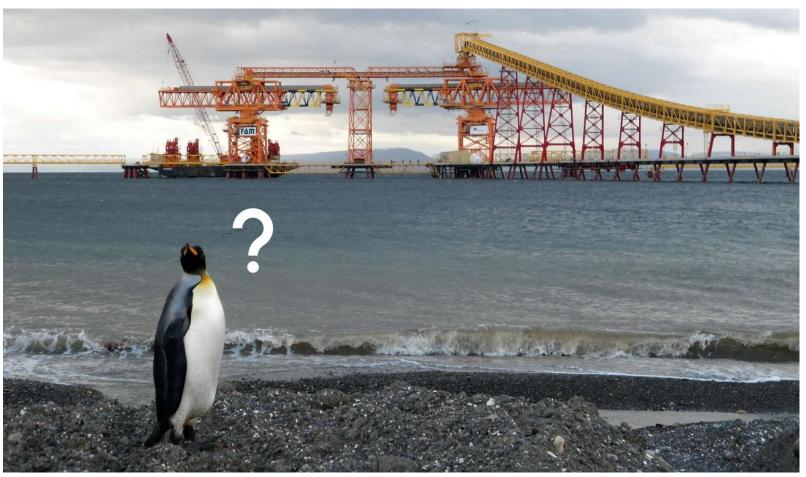
Evergreen vessel blocking Suez channel in 2021 [photo The Sun]

Conclusions

Strategies for Dry Bulk Handling Equipment for Seaside

The following need to be taken into account:

- Berth occupancy & berth commitment limitations
- Impact of fleet distribution and vessel service time
- o Impact of product properties on equipment selection
- o Impact of terminal particularities (space, weather, operations, channel, etc.)


• Is always customized solution

Any questions?

Antarctic Project: Isla Riesco, most southern installation Twin bridge type 2SL 3000 tph, supplied by FAM Beumer Group

MADE DIFF3RENT